advent-of-code-2019/day15/py/main.py

411 lines
14 KiB
Python

import collections
import enum
import sys
from typing import List, Iterable, Tuple, Optional, Set
# Halt indicates that the assembled program should terminate
class Halt(Exception):
pass
class Memory(collections.OrderedDict):
def __missing__(self, address):
if address < 0:
raise KeyError("Address cannot be < 0")
return 0
# Operation represents an operation that the intcode computer should do
class Operation:
OPCODE_TERMINATE = 99
OPCODE_ADD = 1
OPCODE_MULTIPLY = 2
OPCODE_INPUT = 3
OPCODE_OUTPUT = 4
OPCODE_JUMP_IF_TRUE = 5
OPCODE_JUMP_IF_FALSE = 6
OPCODE_LESS_THAN = 7
OPCODE_EQUALS = 8
OPCODE_SET_REL_BASE = 9
MODE_POSITION = 0
MODE_IMMEDIATE = 1
MODE_RELATIVE = 2
ALL_OPCODES = (OPCODE_TERMINATE, OPCODE_ADD, OPCODE_MULTIPLY, OPCODE_INPUT, OPCODE_OUTPUT,
OPCODE_JUMP_IF_TRUE, OPCODE_JUMP_IF_FALSE, OPCODE_LESS_THAN, OPCODE_EQUALS, OPCODE_SET_REL_BASE)
# Opcodes that write to memory as their last parameter
MEMORY_OPCODES = (OPCODE_ADD, OPCODE_MULTIPLY, OPCODE_INPUT, OPCODE_LESS_THAN, OPCODE_EQUALS)
def __init__(self, instruction: int, rel_base: int = 0):
# The opcode is the first two digits of the number, the rest are parameter modes
self.opcode: int = instruction % 100
if self.opcode not in Operation.ALL_OPCODES:
raise ValueError(f"Bad opcode: {self.opcode}")
self.modes: Tuple[int, ...] = self._extract_parameter_modes(instruction//100)
self.output = None
self.rel_base = rel_base
def _extract_parameter_modes(self, raw_modes) -> Tuple[int, ...]:
PARAMETER_COUNTS = {
Operation.OPCODE_TERMINATE: 0,
Operation.OPCODE_ADD: 3,
Operation.OPCODE_MULTIPLY: 3,
Operation.OPCODE_INPUT: 1,
Operation.OPCODE_OUTPUT: 1,
Operation.OPCODE_JUMP_IF_TRUE: 2,
Operation.OPCODE_JUMP_IF_FALSE: 2,
Operation.OPCODE_LESS_THAN: 3,
Operation.OPCODE_EQUALS: 3,
Operation.OPCODE_SET_REL_BASE: 1,
}
num_parameters = PARAMETER_COUNTS[self.opcode]
modes = [Operation.MODE_POSITION for i in range(num_parameters)]
mode_str = str(raw_modes)
# Iterate over the modes digits backwards, assigning them to the parameter list until we exhaust the modes
# The rest must be leading zeroes
for mode_index, digit in zip(range(num_parameters), reversed(mode_str)):
modes[mode_index] = int(digit)
return tuple(modes)
# Run the given operation, starting at the given instruction pointer
# Returns the address that the instruction pointer should become
def run(self, memory: Memory, instruction_pointer: int, program_input: Optional[int] = None) -> int:
OPERATION_FUNCS = {
# nop for terminate
Operation.OPCODE_TERMINATE: Operation.terminate,
Operation.OPCODE_ADD: Operation.add,
Operation.OPCODE_MULTIPLY: Operation.multiply,
Operation.OPCODE_INPUT: Operation.input,
Operation.OPCODE_OUTPUT: Operation.output,
Operation.OPCODE_JUMP_IF_TRUE: Operation.jump_if_true,
Operation.OPCODE_JUMP_IF_FALSE: Operation.jump_if_false,
Operation.OPCODE_LESS_THAN: Operation.less_than,
Operation.OPCODE_EQUALS: Operation.equals,
Operation.OPCODE_SET_REL_BASE: Operation.set_rel_base
}
# Reset the output and rel base of a previous run
self.output = None
args = []
for i, mode in enumerate(self.modes):
# Add 1 to move past the opcode itself
pointer = instruction_pointer + i + 1
arg = memory[pointer]
# The last argument (the address parameter) must always act as an immediate
# The problem statement is misleading in this regard. You do NOT want to get an address to store the value
# at from another address.
if mode != self.MODE_IMMEDIATE and i == len(self.modes) - 1 and self.opcode in Operation.MEMORY_OPCODES:
if mode == Operation.MODE_RELATIVE:
arg = self.rel_base + arg
# Position mode is already handled since it would be arg = arg here.
elif mode == Operation.MODE_POSITION:
arg = memory[arg]
elif mode == Operation.MODE_RELATIVE:
arg = memory[self.rel_base + arg]
elif mode != Operation.MODE_IMMEDIATE:
raise ValueError(f"Invalid parameter mode {mode}")
args.append(arg)
func = OPERATION_FUNCS[self.opcode]
if program_input is None:
jump_addr = func(self, memory, *args)
else:
jump_addr = func(self, memory, program_input, *args)
out_addr = instruction_pointer + len(self.modes) + 1
if jump_addr is not None:
out_addr = jump_addr
return out_addr
def terminate(self, memory: Memory) -> None:
raise Halt("catch fire")
def add(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = a + b
def multiply(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = a * b
def input(self, memory: Memory, program_input: int, loc: int) -> None:
memory[loc] = program_input
def output(self, memory: Memory, value: int) -> None:
self.output = value
def jump_if_true(self, memory: Memory, test_value: int, new_instruction_pointer: int) -> Optional[int]:
return new_instruction_pointer if test_value != 0 else None
def jump_if_false(self, memory: Memory, test_value: int, new_instruction_pointer: int) -> Optional[int]:
return new_instruction_pointer if test_value == 0 else None
def less_than(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = int(a < b)
def equals(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = int(a == b)
def set_rel_base(self, memory: Memory, base_delta: int) -> None:
self.rel_base += base_delta
# Executes the program, returning the instruction pointer to continue at (if the program paused), the relative base,
# and a list of all outputs that occurred during the program's execution
def execute_program(memory: Memory, program_inputs: List[int], initial_instruction_pointer: int = 0, initial_rel_base: int = 0) -> Tuple[Optional[int], int, List[int]]:
i = initial_instruction_pointer
input_cursor = 0
outputs = []
rel_base = initial_rel_base
# Go up to the maximum address, not the number of addresses
while i < max(memory.keys()):
operation = Operation(memory[i], rel_base)
program_input = None
# If we're looking for input
if operation.opcode == Operation.OPCODE_INPUT:
# If we are out of input, don't fail out, but rather just pause execution
if input_cursor >= len(program_inputs):
return i, rel_base, outputs
program_input = program_inputs[input_cursor]
input_cursor += 1
try:
i = operation.run(memory, i, program_input)
output = operation.output
rel_base = operation.rel_base
except Halt:
break
if output is not None:
outputs.append(output)
# The program is finished, and we are saying there is no instruction pointer
return None, rel_base, outputs
# Problem specific code stats here
class Direction(enum.IntEnum):
NORTH = 1
SOUTH = 2
EAST = 3
WEST = 4
@staticmethod
def move_coords_in_direction(direction: 'Direction', row: int, col: int) -> Tuple[int, int]:
D_ROWS = {
Direction.NORTH: -1,
Direction.SOUTH: 1,
Direction.EAST: 0,
Direction.WEST: 0
}
D_COLS = {
Direction.NORTH: 0,
Direction.SOUTH: 0,
Direction.EAST: -1,
Direction.WEST: 1
}
return (row + D_ROWS[direction], col + D_COLS[direction])
@staticmethod
def get_opposite(direction: 'Direction'):
OPPOSITES = {
Direction.NORTH: Direction.SOUTH,
Direction.SOUTH: Direction.NORTH,
Direction.EAST: Direction.WEST,
Direction.WEST: Direction.EAST
}
return OPPOSITES[direction]
class Node:
class Type(enum.Enum):
WALL = 0
OPEN = 1
TARGET = 2
OXYGEN = 3
def __init__(self, row: int, col: int, node_type: Type):
self.row = row
self.col = col
self.node_type = node_type
# Store as a dict of NORTH, SOUTH, WEST, EAST to the node, corresponding to the directions gievn
self.neighbors = {}
self.distance = None
def __repr__(self) -> str:
return f'<Node: row={self.row}, col={self.col}, type={self.node_type}, num_neighbors={len(self.neighbors)}>'
def build_graph_with_dfs(memory: Memory, root: Node) -> None:
next_ip = 0
rel_base = 0
visited = set()
def explore_in_direction(direction: Direction) -> Node.Type:
nonlocal next_ip
nonlocal rel_base
next_ip, rel_base, outputs = execute_program(memory, [direction], next_ip, rel_base)
if next_ip is None:
raise Exception("Program terminated unexpectedly")
return Node.Type(outputs[0])
def dfs(node: Node):
visited.add(node)
neighbors = {
Direction.NORTH: None,
Direction.SOUTH: None,
Direction.EAST: None,
Direction.WEST: None
}
neighbors = {**neighbors, **node.neighbors}
for direction, neighbor in neighbors.items():
if neighbor in visited:
continue
node_type = explore_in_direction(direction)
if neighbor is None:
neighbor_coords = Direction.move_coords_in_direction(direction, node.row, node.col)
neighbor = Node(neighbor_coords[0], neighbor_coords[1], node_type)
neighbor.neighbors[Direction.get_opposite(direction)] = node
neighbors[direction] = neighbor
node.neighbors[direction] = neighbor
# If the node type is a wall, we can't explore it.
if node_type != Node.Type.WALL:
dfs(neighbor)
# Make sure we backtrack after weexplore a node so that we don't lose track of the robot's position
explore_in_direction(Direction.get_opposite(direction))
dfs(root)
# Find the distance to all nodes in the graph, returning a set of the nodes explored
def populate_graph_distances(root: Node) -> Set[Node]:
root.distance = 0
to_visit = [root]
visited = set()
while len(to_visit) > 0:
node = to_visit.pop(0)
if node in visited:
continue
visited.add(node)
for neighbor in node.neighbors.values():
if neighbor.node_type == Node.Type.WALL:
continue
neighbor.distance = node.distance + 1
to_visit.append(neighbor)
return visited
def part1(all_nodes: Iterable[Node]) -> int:
for node in all_nodes:
if node.node_type == node.Type.TARGET:
return node.distance
else:
raise Exception("No target node!")
# Expects an iterable of nodes that are explorable (i.e. not walls)
def part2(all_nodes: Iterable[Node]) -> int:
for node in all_nodes:
if node.node_type == node.Type.TARGET:
node.node_type = node.Type.OXYGEN
break
else:
raise Exception("No target node!")
# Due to our inability to make large copies of the graph, we need to store the node types by position
# We could _probably_ clean up the rest of the program to be in this form, but al ot of the graph searches would be
# less clean
node_types = {(node.row, node.col): node.node_type for node in all_nodes}
node_types_to_check = node_types.copy()
minutes = 0
# While we have nodes that aren't oxygen left over
while len([node_type for node_type in node_types_to_check.values() if node_type != Node.Type.OXYGEN]) > 0:
minutes += 1
for location, node_type in node_types_to_check.items():
if node_type != Node.Type.OXYGEN:
continue
for direction in Direction:
location_in_direction = Direction.move_coords_in_direction(direction, *location)
# Spread the oxygen if the tile exists and we're not spreading into a wall
if location_in_direction in node_types:
node_types[location_in_direction] = Node.Type.OXYGEN
node_types_to_check = node_types.copy()
return minutes
# A debug method that uses dfs to print the entire maze graph
def print_graph(root: Node):
nodes = {}
visited = set()
to_visit = [root]
while len(to_visit) > 0:
node = to_visit.pop()
if node in visited:
continue
visited.add(node)
nodes[(node.row, node.col)] = node
for neighbor in node.neighbors.values():
to_visit.append(neighbor)
max_col = max(coord[0] for coord in nodes)
max_row = max(coord[1] for coord in nodes)
min_col = min(coord[0] for coord in nodes)
min_row = min(coord[1] for coord in nodes)
for i in range(min_row, max_row+1):
for j in range(min_col, max_col+1):
if (i, j) == (0, 0):
print('!', end='')
if (i, j) not in nodes:
print('?', end='')
continue
node = nodes[(i, j)]
if node.node_type == Node.Type.TARGET:
print('x', end='')
elif node.node_type == Node.Type.WALL:
print('#', end='')
else:
print(' ', end='')
print('')
if __name__ == "__main__":
if len(sys.argv) != 2:
# Today's part 2 produces a lot of output, so i wanted to keep them separate
print("Usage: ./main.py in_file")
sys.exit(1)
memory = Memory()
with open(sys.argv[1]) as f:
for i, item in enumerate(f.read().rstrip().split(",")):
memory[i] = int(item)
root_node = Node(0, 0, Node.Type.OPEN)
build_graph_with_dfs(memory, root_node)
nodes = populate_graph_distances(root_node)
print_graph(root_node)
print(part1(nodes))
print(part2(nodes))