advent-of-code-2019/day11/py/main.py

258 lines
9.5 KiB
Python

import collections
import sys
from typing import List, Tuple, Optional, DefaultDict
# Halt indicates that the assembled program should terminate
class Halt(Exception):
pass
class Memory(collections.OrderedDict):
def __missing__(self, address):
if address < 0:
raise KeyError("Address cannot be < 0")
return 0
# Operation represents an operation that the intcode computer should do
class Operation:
OPCODE_TERMINATE = 99
OPCODE_ADD = 1
OPCODE_MULTIPLY = 2
OPCODE_INPUT = 3
OPCODE_OUTPUT = 4
OPCODE_JUMP_IF_TRUE = 5
OPCODE_JUMP_IF_FALSE = 6
OPCODE_LESS_THAN = 7
OPCODE_EQUALS = 8
OPCODE_SET_REL_BASE = 9
MODE_POSITION = 0
MODE_IMMEDIATE = 1
MODE_RELATIVE = 2
ALL_OPCODES = (OPCODE_TERMINATE, OPCODE_ADD, OPCODE_MULTIPLY, OPCODE_INPUT, OPCODE_OUTPUT,
OPCODE_JUMP_IF_TRUE, OPCODE_JUMP_IF_FALSE, OPCODE_LESS_THAN, OPCODE_EQUALS, OPCODE_SET_REL_BASE)
# Opcodes that write to memory as their last parameter
MEMORY_OPCODES = (OPCODE_ADD, OPCODE_MULTIPLY, OPCODE_INPUT, OPCODE_LESS_THAN, OPCODE_EQUALS)
def __init__(self, instruction: int, rel_base: int = 0):
# The opcode is the first two digits of the number, the rest are parameter modes
self.opcode: int = instruction % 100
if self.opcode not in Operation.ALL_OPCODES:
raise ValueError(f"Bad opcode: {self.opcode}")
self.modes: Tuple[int, ...] = self._extract_parameter_modes(instruction//100)
self.output = None
self.rel_base = rel_base
def _extract_parameter_modes(self, raw_modes) -> Tuple[int, ...]:
PARAMETER_COUNTS = {
Operation.OPCODE_TERMINATE: 0,
Operation.OPCODE_ADD: 3,
Operation.OPCODE_MULTIPLY: 3,
Operation.OPCODE_INPUT: 1,
Operation.OPCODE_OUTPUT: 1,
Operation.OPCODE_JUMP_IF_TRUE: 2,
Operation.OPCODE_JUMP_IF_FALSE: 2,
Operation.OPCODE_LESS_THAN: 3,
Operation.OPCODE_EQUALS: 3,
Operation.OPCODE_SET_REL_BASE: 1,
}
num_parameters = PARAMETER_COUNTS[self.opcode]
modes = [Operation.MODE_POSITION for i in range(num_parameters)]
mode_str = str(raw_modes)
# Iterate over the modes digits backwards, assigning them to the parameter list until we exhaust the modes
# The rest must be leading zeroes
for mode_index, digit in zip(range(num_parameters), reversed(mode_str)):
modes[mode_index] = int(digit)
return tuple(modes)
# Run the given operation, starting at the given instruction pointer
# Returns the address that the instruction pointer should become
def run(self, memory: Memory, instruction_pointer: int, program_input: Optional[int] = None) -> int:
OPERATION_FUNCS = {
# nop for terminate
Operation.OPCODE_TERMINATE: Operation.terminate,
Operation.OPCODE_ADD: Operation.add,
Operation.OPCODE_MULTIPLY: Operation.multiply,
Operation.OPCODE_INPUT: Operation.input,
Operation.OPCODE_OUTPUT: Operation.output,
Operation.OPCODE_JUMP_IF_TRUE: Operation.jump_if_true,
Operation.OPCODE_JUMP_IF_FALSE: Operation.jump_if_false,
Operation.OPCODE_LESS_THAN: Operation.less_than,
Operation.OPCODE_EQUALS: Operation.equals,
Operation.OPCODE_SET_REL_BASE: Operation.set_rel_base
}
# Reset the output and rel base of a previous run
self.output = None
args = []
for i, mode in enumerate(self.modes):
# Add 1 to move past the opcode itself
pointer = instruction_pointer + i + 1
arg = memory[pointer]
# The last argument (the address parameter) must always act as an immediate
# The problem statement is misleading in this regard. You do NOT want to get an address to store the value
# at from another address.
if mode != self.MODE_IMMEDIATE and i == len(self.modes) - 1 and self.opcode in Operation.MEMORY_OPCODES:
if mode == Operation.MODE_RELATIVE:
arg = self.rel_base + arg
# Position mode is already handled since it would be arg = arg here.
elif mode == Operation.MODE_POSITION:
arg = memory[arg]
elif mode == Operation.MODE_RELATIVE:
arg = memory[self.rel_base + arg]
elif mode != Operation.MODE_IMMEDIATE:
raise ValueError(f"Invalid parameter mode {mode}")
args.append(arg)
func = OPERATION_FUNCS[self.opcode]
if program_input is None:
jump_addr = func(self, memory, *args)
else:
jump_addr = func(self, memory, program_input, *args)
out_addr = instruction_pointer + len(self.modes) + 1
if jump_addr is not None:
out_addr = jump_addr
return out_addr
def terminate(self, memory: Memory) -> None:
raise Halt("catch fire")
def add(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = a + b
def multiply(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = a * b
def input(self, memory: Memory, program_input: int, loc: int) -> None:
memory[loc] = program_input
def output(self, memory: Memory, value: int) -> None:
self.output = value
def jump_if_true(self, memory: Memory, test_value: int, new_instruction_pointer: int) -> Optional[int]:
return new_instruction_pointer if test_value != 0 else None
def jump_if_false(self, memory: Memory, test_value: int, new_instruction_pointer: int) -> Optional[int]:
return new_instruction_pointer if test_value == 0 else None
def less_than(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = int(a < b)
def equals(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = int(a == b)
def set_rel_base(self, memory: Memory, base_delta: int) -> None:
self.rel_base += base_delta
# Executes the program, returning the instruction pointer to continue at (if the program paused), the relative base,
# and a list of all outputs that occurred during the program's execution
def execute_program(memory: Memory, program_inputs: List[int], initial_instruction_pointer: int = 0, initial_rel_base: int = 0) -> Tuple[Optional[int], int, List[int]]:
i = initial_instruction_pointer
input_cursor = 0
outputs = []
rel_base = initial_rel_base
# Go up to the maximum address, not the number of addresses
while i < max(memory.keys()):
operation = Operation(memory[i], rel_base)
program_input = None
# If we're looking for input
if operation.opcode == Operation.OPCODE_INPUT:
# If we are out of input, don't fail out, but rather just pause execution
if input_cursor >= len(program_inputs):
return i, rel_base, outputs
program_input = program_inputs[input_cursor]
input_cursor += 1
try:
i = operation.run(memory, i, program_input)
output = operation.output
rel_base = operation.rel_base
except Halt:
break
if output is not None:
outputs.append(output)
# The program is finished, and we are saying there is no instruction pointer
return None, rel_base, outputs
# Trace all of the painted points that the robot makes
def trace_paints(initial_memory_state: Memory, initial_color: int = 0) -> DefaultDict[Tuple[int, int], int]:
ROBOT_DIRECTIONS = ['UP', 'RIGHT', 'DOWN', 'LEFT']
ROBOT_DELTAS = {
'UP': (0, 1),
'RIGHT': (-1, 0),
'DOWN': (0, -1),
'LEFT': (1, 0)
}
colors = collections.defaultdict(lambda: 0)
colors[(0, 0)] = initial_color
# Represents an index in ROBOT_DIRECTIONS
robot_direction = 0
robot_row, robot_col = (0, 0)
memory = initial_memory_state.copy()
last_ip = 0
rel_base = 0
while last_ip is not None:
current_color = colors[(robot_row, robot_col)]
last_ip, rel_base, outputs = execute_program(memory, [current_color], last_ip, rel_base)
paint_color, rotation_direction = outputs
colors[(robot_row, robot_col)] = paint_color
# Rotate left/right respectively
if rotation_direction == 0:
robot_direction -= 1
else:
robot_direction += 1
# Set the new direction to the corresponding one in the ROBOT_DIRECTIONS list
robot_direction %= len(ROBOT_DIRECTIONS)
d_row, d_col = ROBOT_DELTAS[ROBOT_DIRECTIONS[robot_direction]]
robot_row, robot_col = robot_row + d_row, robot_col + d_col
return colors
def part1(inputs: Memory) -> int:
colors = trace_paints(inputs, 0)
return len(colors)
def part2(inputs: Memory) -> None:
colors = trace_paints(inputs, 1)
max_x = max(coord[0] for coord in colors)
max_y = max(coord[1] for coord in colors)
min_x = min(coord[0] for coord in colors)
min_y = min(coord[1] for coord in colors)
for j in reversed(range(min_y, max_y+1)):
for i in reversed(range(min_x, max_x+1)):
print('#' if colors[(i, j)] == 1 else ' ', end='')
print('')
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: ./main.py in_file")
sys.exit(1)
memory = Memory()
with open(sys.argv[1]) as f:
for i, item in enumerate(f.read().rstrip().split(",")):
memory[i] = int(item)
print(part1(memory))
part2(memory)