advent-of-code-2019/day13/py/main.py

304 lines
11 KiB
Python

import collections
import enum
import itertools
import math
import sys
import os
from typing import List, Tuple, Optional, DefaultDict, Iterable, Any
# Halt indicates that the assembled program should terminate
class Halt(Exception):
pass
class Memory(collections.OrderedDict):
def __missing__(self, address):
if address < 0:
raise KeyError("Address cannot be < 0")
return 0
# Operation represents an operation that the intcode computer should do
class Operation:
OPCODE_TERMINATE = 99
OPCODE_ADD = 1
OPCODE_MULTIPLY = 2
OPCODE_INPUT = 3
OPCODE_OUTPUT = 4
OPCODE_JUMP_IF_TRUE = 5
OPCODE_JUMP_IF_FALSE = 6
OPCODE_LESS_THAN = 7
OPCODE_EQUALS = 8
OPCODE_SET_REL_BASE = 9
MODE_POSITION = 0
MODE_IMMEDIATE = 1
MODE_RELATIVE = 2
ALL_OPCODES = (OPCODE_TERMINATE, OPCODE_ADD, OPCODE_MULTIPLY, OPCODE_INPUT, OPCODE_OUTPUT,
OPCODE_JUMP_IF_TRUE, OPCODE_JUMP_IF_FALSE, OPCODE_LESS_THAN, OPCODE_EQUALS, OPCODE_SET_REL_BASE)
# Opcodes that write to memory as their last parameter
MEMORY_OPCODES = (OPCODE_ADD, OPCODE_MULTIPLY, OPCODE_INPUT, OPCODE_LESS_THAN, OPCODE_EQUALS)
def __init__(self, instruction: int, rel_base: int = 0):
# The opcode is the first two digits of the number, the rest are parameter modes
self.opcode: int = instruction % 100
if self.opcode not in Operation.ALL_OPCODES:
raise ValueError(f"Bad opcode: {self.opcode}")
self.modes: Tuple[int, ...] = self._extract_parameter_modes(instruction//100)
self.output = None
self.rel_base = rel_base
def _extract_parameter_modes(self, raw_modes) -> Tuple[int, ...]:
PARAMETER_COUNTS = {
Operation.OPCODE_TERMINATE: 0,
Operation.OPCODE_ADD: 3,
Operation.OPCODE_MULTIPLY: 3,
Operation.OPCODE_INPUT: 1,
Operation.OPCODE_OUTPUT: 1,
Operation.OPCODE_JUMP_IF_TRUE: 2,
Operation.OPCODE_JUMP_IF_FALSE: 2,
Operation.OPCODE_LESS_THAN: 3,
Operation.OPCODE_EQUALS: 3,
Operation.OPCODE_SET_REL_BASE: 1,
}
num_parameters = PARAMETER_COUNTS[self.opcode]
modes = [Operation.MODE_POSITION for i in range(num_parameters)]
mode_str = str(raw_modes)
# Iterate over the modes digits backwards, assigning them to the parameter list until we exhaust the modes
# The rest must be leading zeroes
for mode_index, digit in zip(range(num_parameters), reversed(mode_str)):
modes[mode_index] = int(digit)
return tuple(modes)
# Run the given operation, starting at the given instruction pointer
# Returns the address that the instruction pointer should become
def run(self, memory: Memory, instruction_pointer: int, program_input: Optional[int] = None) -> int:
OPERATION_FUNCS = {
# nop for terminate
Operation.OPCODE_TERMINATE: Operation.terminate,
Operation.OPCODE_ADD: Operation.add,
Operation.OPCODE_MULTIPLY: Operation.multiply,
Operation.OPCODE_INPUT: Operation.input,
Operation.OPCODE_OUTPUT: Operation.output,
Operation.OPCODE_JUMP_IF_TRUE: Operation.jump_if_true,
Operation.OPCODE_JUMP_IF_FALSE: Operation.jump_if_false,
Operation.OPCODE_LESS_THAN: Operation.less_than,
Operation.OPCODE_EQUALS: Operation.equals,
Operation.OPCODE_SET_REL_BASE: Operation.set_rel_base
}
# Reset the output and rel base of a previous run
self.output = None
args = []
for i, mode in enumerate(self.modes):
# Add 1 to move past the opcode itself
pointer = instruction_pointer + i + 1
arg = memory[pointer]
# The last argument (the address parameter) must always act as an immediate
# The problem statement is misleading in this regard. You do NOT want to get an address to store the value
# at from another address.
if mode != self.MODE_IMMEDIATE and i == len(self.modes) - 1 and self.opcode in Operation.MEMORY_OPCODES:
if mode == Operation.MODE_RELATIVE:
arg = self.rel_base + arg
# Position mode is already handled since it would be arg = arg here.
elif mode == Operation.MODE_POSITION:
arg = memory[arg]
elif mode == Operation.MODE_RELATIVE:
arg = memory[self.rel_base + arg]
elif mode != Operation.MODE_IMMEDIATE:
raise ValueError(f"Invalid parameter mode {mode}")
args.append(arg)
func = OPERATION_FUNCS[self.opcode]
if program_input is None:
jump_addr = func(self, memory, *args)
else:
jump_addr = func(self, memory, program_input, *args)
out_addr = instruction_pointer + len(self.modes) + 1
if jump_addr is not None:
out_addr = jump_addr
return out_addr
def terminate(self, memory: Memory) -> None:
raise Halt("catch fire")
def add(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = a + b
def multiply(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = a * b
def input(self, memory: Memory, program_input: int, loc: int) -> None:
memory[loc] = program_input
def output(self, memory: Memory, value: int) -> None:
self.output = value
def jump_if_true(self, memory: Memory, test_value: int, new_instruction_pointer: int) -> Optional[int]:
return new_instruction_pointer if test_value != 0 else None
def jump_if_false(self, memory: Memory, test_value: int, new_instruction_pointer: int) -> Optional[int]:
return new_instruction_pointer if test_value == 0 else None
def less_than(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = int(a < b)
def equals(self, memory: Memory, a: int, b: int, loc: int) -> None:
memory[loc] = int(a == b)
def set_rel_base(self, memory: Memory, base_delta: int) -> None:
self.rel_base += base_delta
# Executes the program, returning the instruction pointer to continue at (if the program paused), the relative base,
# and a list of all outputs that occurred during the program's execution
def execute_program(memory: Memory, program_inputs: List[int], initial_instruction_pointer: int = 0, initial_rel_base: int = 0) -> Tuple[Optional[int], int, List[int]]:
i = initial_instruction_pointer
input_cursor = 0
outputs = []
rel_base = initial_rel_base
# Go up to the maximum address, not the number of addresses
while i < max(memory.keys()):
operation = Operation(memory[i], rel_base)
program_input = None
# If we're looking for input
if operation.opcode == Operation.OPCODE_INPUT:
# If we are out of input, don't fail out, but rather just pause execution
if input_cursor >= len(program_inputs):
return i, rel_base, outputs
program_input = program_inputs[input_cursor]
input_cursor += 1
try:
i = operation.run(memory, i, program_input)
output = operation.output
rel_base = operation.rel_base
except Halt:
break
if output is not None:
outputs.append(output)
# The program is finished, and we are saying there is no instruction pointer
return None, rel_base, outputs
# Problem specific code stats here
class Tile(enum.Enum):
EMPTY = 0
WALL = 1
BLOCK = 2
PADDLE = 3
BALL = 4
# Iterate over the given iterable in chunks by making a copy of the iteratable as an iterator
def group_iter(iterable: Iterable[Any], chunk_size: int):
chunk_list = [iter(iterable)] * chunk_size
return itertools.zip_longest(*chunk_list)
# Trace all of the painted points that the robot makes
def run_game(initial_memory_state: Memory, playable: bool = False) -> (DefaultDict[Tuple[int, int], int], Optional[int]):
screen = collections.defaultdict(lambda: Tile.EMPTY)
next_ip = 0
rel_base = 0
score = None
memory = initial_memory_state.copy()
# Set the machine to free play mode
if playable:
memory[0] = 2
next_input = 0
paddle_position = None
while next_ip is not None:
next_ip, rel_base, outputs = execute_program(memory, [next_input], next_ip, rel_base)
for x, y, value in group_iter(outputs, 3):
if x == -1 and y == 0:
score = value
continue
tile = Tile(value)
screen[(x, y)] = tile
# Everything after this if statement is concerned with moving the paddle, which is unneeded if the game isn't playable
if not playable:
continue
if tile == Tile.PADDLE:
paddle_position = (x, y)
elif tile == Tile.BALL and paddle_position is not None:
# Input 0 if the ball is above the paddle, move the paddle towards the ball otherwise.
next_input = 0 if x == paddle_position[0] else int(math.copysign(1, x - paddle_position[0]))
print_screen(screen, clear_before_print=playable)
return screen, score
def print_screen(screen, clear_before_print=False):
def clear():
if os.name == 'nt':
os.system('clr')
else:
print('\033c')
if clear_before_print:
clear()
max_x = max(coord[0] for coord in screen)
max_y = max(coord[1] for coord in screen)
min_x = min(coord[0] for coord in screen)
min_y = min(coord[1] for coord in screen)
for j in range(min_y, max_y+1):
for i in range(min_x, max_x+1):
tile = screen[(i, j)]
if tile == Tile.BLOCK:
print('#', end='')
elif tile == Tile.BALL:
print('*', end='')
elif tile == tile.PADDLE:
print('=', end='')
elif tile != Tile.EMPTY:
print('.', end='')
else:
print(' ', end='')
print('')
def part1(inputs: Memory) -> int:
screen = run_game(inputs)[0]
return list(screen.values()).count(Tile.BLOCK)
def part2(inputs: Memory) -> int:
score = run_game(inputs, True)[1]
return score
if __name__ == "__main__":
if len(sys.argv) != 3:
# Today's part 2 produces a lot of output, so i wanted to keep them separate
print("Usage: ./main.py in_file part")
sys.exit(1)
memory = Memory()
with open(sys.argv[1]) as f:
for i, item in enumerate(f.read().rstrip().split(",")):
memory[i] = int(item)
parts = {
'1': part1,
'2': part2
}
print(parts[sys.argv[2]](memory))