Solve part 2 on my own :)

Custom graph based solution
master
Nick Krichevsky 2020-12-10 04:17:27 -05:00
parent 6fefc1c325
commit 2adbdf08ce
1 changed files with 35 additions and 9 deletions

View File

@ -58,6 +58,39 @@ Value getOrDefault(const std::map<Key, Value> &map, Key key, Value defaultValue)
}
}
/**
* Finds the number of paths from the given source node to the target (the end of the adapters lsit)
* Based on algorithm from:
* https://cs.stackexchange.com/questions/3078/algorithm-that-finds-the-number-of-simple-paths-from-s-to-t-in-g
* @param adapters The puzzle input, prepared by prepareAdapters
* @param numPaths A count of the number of paths
* @param source The node to start from
* @return long
*/
long solvePart2WithGraph(const std::vector<int> &adapters, std::unordered_map<int, long> &numPaths, int source = 0) {
int target = adapters.size() - 1;
if (source == target) {
return 1;
}
// If we already know the number of paths to source, we're done
auto pathsToSource = numPaths.find(source);
if (pathsToSource != numPaths.end()) {
return pathsToSource->second;
}
// Find the number of paths by just checking all off the neighbors
// Something is defined as a neighbor if we can get to it by addding [1, 3]
long total = 0;
for (int i = source + 1; i < adapters.size() && adapters.at(i) - adapters.at(source) <= MAX_VOLTAGE_DELTA; i++) {
total += solvePart2WithGraph(adapters, numPaths, i);
}
numPaths.emplace(source, total);
return total;
}
int part1(const std::vector<int> &input) {
std::map<int, int> differenceCounts;
std::vector<int> adapters(input);
@ -74,16 +107,9 @@ int part1(const std::vector<int> &input) {
long part2(const std::vector<int> &input) {
std::vector<int> adapters(input);
prepareInput(adapters);
// Dynamic programming approach that counts the number of ways to get to each point by backshifting
std::vector<long> counts(adapters.back() + 1, 0);
counts.at(0) = 1;
for (auto it = std::next(adapters.cbegin()); it != adapters.cend(); it++) {
for (int i = *it; i >= 0 && i >= *it - MAX_VOLTAGE_DELTA; i--) {
counts.at(*it) += counts.at(i);
}
}
std::unordered_map<int, long> counts;
return counts.back();
return solvePart2WithGraph(adapters, counts);
}
int main(int argc, char *argv[]) {