#include #include #include #include #include #include #include #include #include #include #include constexpr int P1_NUM_CRAB_TURNS = 100; constexpr int P2_NUM_CRAB_TURNS = 1E7; constexpr int NUM_P2_CUPS = 1E6; /** * CupGraph represents a graph of cups in the game. Each item points to its counter-clockwise neighbor. * * This is effectively the same as a double-circular-linked-list, but there are no values stored beyond the indices, so * I just left it as a graph :) */ class CupGraph { public: /** * Iterate over the graph */ class const_iterator { public: using difference_type = int; using value_type = const int; using pointer = value_type *; using reference = value_type &; using iterator_category = std::input_iterator_tag; /** * Create a new iterator that iterates at the graph, starting at the given value. * Note that this is not the first value that will be returned, but the one whose _NEIGHBOR_ will be returned. * @param graph * @param n */ const_iterator(const CupGraph &graph, int n) : graph(graph), n(n), stop(n) { } /** * Increment this iterator to point to the neighbor of the one this element points to * @return const_iterator& The new value of the iterator */ const_iterator &operator++() { auto it = this->graph.neighbors.left.find(this->n); if (it == this->graph.neighbors.left.end()) { throw "Invalid state. Graph does not contain member that is pointed to by another."; } n = it->second; if (n == this->stop) { n = END; } return *this; } /** * Increment this iterator to point to the neighbor of the one this element points to * @return const_iterator& The previous value of the iterator */ const_iterator operator++(int) { const_iterator res = *this; ++(*this); return res; } bool operator==(const const_iterator &other) const { return this->n == other.n; } bool operator!=(const const_iterator &other) const { return !(*this == other); } /** * Resolve this iterator. Note that this returns the NEIGHBOR of the element this points to, not the element * itself. * @return int The neighbor of the element this iterator points to */ int operator*() const { auto it = this->graph.neighbors.left.find(this->n); if (it == this->graph.neighbors.left.end()) { throw "Invalid state; iterator does not point to value in map"; } return it->second; } private: static constexpr int END = -1; friend CupGraph; const CupGraph &graph; int n; int stop; }; /** * Construct a new CupGraph from the given range * @tparam IntIter An iterator that returns integers * @param start The item to start at * @param end The item to end at */ template CupGraph(IntIter start, IntIter end) { if (start == end) { return; } int counterclockwiseItem = *start; for (auto it = start + 1; it != end; ++it) { this->neighbors.insert({counterclockwiseItem, *it}); counterclockwiseItem = *it; } // Complete the cycle this->neighbors.insert({*(end - 1), *start}); }; /** * Get an iterator for a cycle starting at the given element. This will be the *LAST* item returned by the range * (i.e. the first item is the neighbor of this item) * @param start The item to start at. * @return std::pair The start and end iterators. */ std::pair cycleRange(int start) const { return std::make_pair( CupGraph::const_iterator(*this, start), CupGraph::const_iterator(*this, CupGraph::const_iterator::END)); } /** * Move the cup at key to be clockwise to dest * * **This is not used in the final solution, but is kept for posterity** * * @param key The cup to move * @param dest The cup that will be counterclockwise to key (i.e. key will be clockwise to dest) */ void move(int key, int dest) { auto keyIt = this->neighbors.left.find(key); auto destIt = this->neighbors.left.find(dest); if (keyIt == this->neighbors.left.end() || destIt == this->neighbors.left.end()) { throw std::out_of_range("Item not in map"); } auto counterclockwiseFromKeyIt = this->neighbors.right.find(key); if (counterclockwiseFromKeyIt == this->neighbors.right.end()) { throw std::invalid_argument("Key has no counterclockwise neighbor"); } int clockwiseFromKey = keyIt->second; int clockwiseFromDest = destIt->second; int counterclockwiseFromKey = counterclockwiseFromKeyIt->second; // Unfortunately, using replace doesn't work because we expect that each side has exactly one of each element, // so doing this shuffle is not possible with replace, without some serious edgecasing. this->neighbors.right.erase(key); this->neighbors.left.erase(key); this->neighbors.left.erase(dest); // Stitch the counterclockwise neighbor to be the one clockwise to keyIt this->neighbors.left.insert({counterclockwiseFromKey, clockwiseFromKey}); // Stitching the key to have the same neighbor as the destination did this->neighbors.left.insert({key, clockwiseFromDest}); // Stitch the destination to be adjacent to the key this->neighbors.left.insert({dest, key}); } /** * The same as move, but moves key, key's neighbor, and key's neighbor's neighbor, at once * @param key The key to move * @param dest The destination to move to */ void move3(int key, int dest) { auto keyIt = this->neighbors.left.find(key); auto destIt = this->neighbors.left.find(dest); if (keyIt == this->neighbors.left.end() || destIt == this->neighbors.left.end()) { throw std::out_of_range("Item not in map"); } // Get the two elements after the key. auto keyIt2 = this->neighbors.left.find(keyIt->second); if (keyIt2 == this->neighbors.left.end()) { throw "Invalid state: elements are not linked together"; } auto keyIt3 = this->neighbors.left.find(keyIt2->second); if (keyIt3 == this->neighbors.left.end()) { throw "Invalid state: elements are not linked together"; } auto counterclockwiseFromKeyIt = this->neighbors.right.find(key); if (counterclockwiseFromKeyIt == this->neighbors.right.end()) { throw std::invalid_argument("Key has no counterclockwise neighbor"); } int key3 = keyIt3->first; int clockwiseFromKey3 = keyIt3->second; int clockwiseFromDest = destIt->second; int counterclockwiseFromKey = counterclockwiseFromKeyIt->second; // Unfortunately, using replace doesn't work because we expect that each side has exactly one of each element, // so doing this shuffle is not possible with replace, without some serious edgecasing. this->neighbors.right.erase(key); this->neighbors.left.erase(key3); // this->neighbors.left.erase(key); this->neighbors.left.erase(dest); // Stitch the counterclockwise neighbor to be the one clockwise to the final element in our range this->neighbors.left.insert({counterclockwiseFromKey, clockwiseFromKey3}); // Stitching the final element of our range to have the same neighbor as the destination did this->neighbors.left.insert({key3, clockwiseFromDest}); // Stitch the destination to be adjacent to the key this->neighbors.left.insert({dest, key}); } /** * Get the neighbor of this element * @param n The item to get the neighbor * @return int The neighbor of this element */ int getNext(int n) { auto it = this->neighbors.left.find(n); if (it == this->neighbors.left.end()) { throw std::out_of_range("No item to get next of"); } return it->second; } private: typedef boost::bimap, boost::bimaps::unordered_set_of> neighbor_map_type; neighbor_map_type neighbors; }; std::vector readInput(const std::string &filename) { std::vector input; std::string line; std::ifstream file(filename); while (std::getline(file, line)) { input.push_back(line); } return input; } /** * Make a vector of the cups on the given input line * @param inputLine The single-line puzzle input * @return std::vector The cups on the single line */ std::vector makeCupList(const std::string &inputLine) { std::vector cups; std::transform(inputLine.cbegin(), inputLine.cend(), std::back_inserter(cups), [](char rawNum) { if (rawNum < '0' || rawNum > '9') { throw std::invalid_argument("Not numeric"); } return rawNum - '0'; }); return cups; } /** * Get the next cups to pick up * @param currentCup The current cup * @param graph The graph of cups * @return std::tuple The three cups to pick up */ std::tuple getPickedUpCups(int currentCup, const CupGraph &graph) { auto range = graph.cycleRange(currentCup); auto it = range.first; // This may look stupid, but putting *(it++) into make_tuple will not be evaluated in a deterministic order! int value1 = *(it++); int value2 = *(it++); int value3 = *it; return std::make_tuple(value1, value2, value3); } /** * Check if a tuple contains a certain element * @tparam Tuple A Tuple that contains only elements of type ValueType * @tparam ValueType The type of the value to check membership of * @param tuple The tuple to check * @param value The value to check for * @return true If the tuple contains this item * @return false If the tuple does not contain this item */ template bool tupleContainsItem(Tuple tuple, ValueType value) { return boost::hana::any_of(tuple, [value](ValueType item) { return item == value; }); } /** * Get the destination cup * @param currentCup The current cup * @param graph The graph of cups * @param minCup The minimum cup in the graph (this is only really passed so we don't have to recompute it every time - * it won't change.) * @param maxCup The maximum cup in the graph * @return int The destination cup for this turn. */ int findDestinationCup(int currentCup, const CupGraph &graph, int minCup, int maxCup) { std::tuple pickedUpCups = getPickedUpCups(currentCup, graph); int destinationCup = currentCup; do { destinationCup--; if (destinationCup < minCup) { destinationCup = maxCup; } } while (tupleContainsItem(pickedUpCups, destinationCup)); return destinationCup; } /** * Get the minimum and maximum element of an iterator. This is similar to std::minmax_element, but it returns the values * themselves, not an iterator. * @tparam InputIterator The iterator to loop over * @tparam IterValue The value type in the iterator * @param begin The start of the range * @param end The end of the range * @return std::pair The minimum and maximum in the interator range, as a pair */ template std::pair minmax(InputIterator begin, InputIterator end) { if (begin == end) { throw std::invalid_argument("No values in range"); } auto res = std::accumulate( begin, end, std::make_pair, std::optional>(std::nullopt, std::nullopt), [](const std::pair, std::optional> &minmaxPair, IterValue value) { if (!minmaxPair.first.has_value() && !minmaxPair.first.has_value()) { return std::make_pair(value, value); } // Even though there's an and, we know both items in the pair must have values at this point. return std::make_pair(std::min(value, *minmaxPair.first), std::max(value, *minmaxPair.second)); }); return std::make_pair(*res.first, *res.second); } /** * Run an element of the crab's game. This will mutate given current graph. * @param startingCup The cup to start at * @param graph The graph to run the game against * @param numIterations The number of iterators in the game */ void runGame(int startingCup, CupGraph &graph, int numIterations) { auto graphItems = graph.cycleRange(startingCup); std::pair cupMinMax = minmax(graphItems.first, graphItems.second); int currentCup = startingCup; for (int i = 0; i < numIterations; i++) { int destinationCup = findDestinationCup(currentCup, graph, cupMinMax.first, cupMinMax.second); // Since we move three at a time, we only need to get the first picked up cup int firstPickedUpCup = graph.getNext(currentCup); graph.move3(firstPickedUpCup, destinationCup); currentCup = graph.getNext(currentCup); } } /** * Make the cup label for part 1 * @param graph The cup graph * @return std::string The cup label */ std::string makeFullCupLabel(const CupGraph &graph) { std::string output; auto range = graph.cycleRange(1); std::transform(range.first, range.second, std::back_inserter(output), [](int cup) -> char { return cup + '0'; }); output.pop_back(); return output; } std::string part1(const std::string &inputLine) { std::vector cups = makeCupList(inputLine); CupGraph graph(cups.cbegin(), cups.cend()); runGame(cups.front(), graph, P1_NUM_CRAB_TURNS); return makeFullCupLabel(graph); } long part2(const std::string &inputLine) { std::vector cups = makeCupList(inputLine); // Generate the items needed for part 2. We could maybe do something smart in the graph and generate these // as-needed, but it's more complexity than needed. I think I can live without the 4MB of RAM :) int required = NUM_P2_CUPS - cups.size(); cups.reserve(NUM_P2_CUPS); int max = *(std::max_element(cups.cbegin(), cups.cend())); for (int i = 0; i < required; i++) { cups.push_back(max + i + 1); } CupGraph graph(cups.cbegin(), cups.cend()); runGame(cups.front(), graph, P2_NUM_CRAB_TURNS); auto cycleRange = graph.cycleRange(1); long n1 = *(cycleRange.first++); long n2 = *cycleRange.first; return n1 * n2; } int main(int argc, char *argv[]) { if (argc != 2) { std::cerr << argv[0] << " " << std::endl; return 1; } auto input = readInput(argv[1]); std::cout << part1(input.at(0)) << std::endl; std::cout << part2(input.at(0)) << std::endl; }