advent-of-code-2020/day10/day10.cpp

118 lines
3.3 KiB
C++

#include <folly/String.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <vector>
constexpr auto MAX_VOLTAGE_DELTA = 3;
std::vector<std::string> readInput(const std::string &filename) {
std::vector<std::string> input;
std::string line;
std::ifstream file(filename);
while (std::getline(file, line)) {
input.push_back(line);
}
return input;
}
/**
* Convert a vector of strings to a vector of numbers
* @param input The input for the puzzle
* @return std::vector<int> The puzzle input as numbers
*/
std::vector<int> convertInputToNumbers(const std::vector<std::string> &input) {
std::vector<int> converted;
converted.reserve(input.size());
std::transform(input.cbegin(), input.cend(), std::back_inserter(converted), [](const std::string &line) {
return std::stol(line);
});
return converted;
}
/**
* Add the outlet and max voltage to the input list, and sort it
* @param input The input for the puzzle
*/
void prepareInput(std::vector<int> &input) {
int max_voltage = *std::max_element(input.cbegin(), input.cend()) + MAX_VOLTAGE_DELTA;
input.push_back(0);
input.push_back(max_voltage);
std::sort(input.begin(), input.end());
}
/**
* Finds the number of paths from the given source node to the target (the end of the adapters lsit)
* Based on algorithm from:
* https://cs.stackexchange.com/questions/3078/algorithm-that-finds-the-number-of-simple-paths-from-s-to-t-in-g
* @param adapters The puzzle input, prepared by prepareAdapters
* @param numPaths A count of the number of paths
* @param source The node to start from
* @return long
*/
long solvePart2WithGraph(const std::vector<int> &adapters, std::unordered_map<int, long> &numPaths, int source = 0) {
int target = adapters.size() - 1;
if (source == target) {
return 1;
}
// If we already know the number of paths to source, we're done
auto pathsToSource = numPaths.find(source);
if (pathsToSource != numPaths.end()) {
return pathsToSource->second;
}
// Find the number of paths by just checking all off the neighbors
// Something is defined as a neighbor if we can get to it by addding [1, 3]
long total = 0;
for (int i = source + 1; i < adapters.size() && adapters.at(i) - adapters.at(source) <= MAX_VOLTAGE_DELTA; i++) {
total += solvePart2WithGraph(adapters, numPaths, i);
}
numPaths.emplace(source, total);
return total;
}
int part1(const std::vector<int> &input) {
std::map<int, int> differenceCounts;
std::vector<int> adapters(input);
prepareInput(adapters);
for (auto it = adapters.cbegin(); it != adapters.end() && std::next(it) != adapters.cend(); it++) {
auto difference = *std::next(it) - *it;
differenceCounts[difference]++;
}
return differenceCounts[1] * differenceCounts[3];
}
long part2(const std::vector<int> &input) {
std::vector<int> adapters(input);
prepareInput(adapters);
std::unordered_map<int, long> counts;
return solvePart2WithGraph(adapters, counts);
}
int main(int argc, char *argv[]) {
if (argc != 2) {
std::cerr << argv[0] << " <input_file>" << std::endl;
return 1;
}
auto input = readInput(argv[1]);
auto numericInput = convertInputToNumbers(input);
std::cout << part1(numericInput) << std::endl;
std::cout << part2(numericInput) << std::endl;
}