advent-of-code-2023/day8/main.go
2023-12-08 18:13:01 -05:00

214 lines
4.7 KiB
Go

package main
import (
"errors"
"fmt"
"io"
"os"
"regexp"
"strings"
)
type Direction int
type NodeAddress string
const (
DirectionLeft Direction = iota
DirectionRight
)
type NodeChoice struct {
left NodeAddress
right NodeAddress
}
// TakeDirection will take the node in the given direction. Panics if an invalid direction is given
func (choice NodeChoice) TakeDirection(direction Direction) NodeAddress {
switch direction {
case DirectionLeft:
return choice.left
case DirectionRight:
return choice.right
default:
panic("invalid direction value")
}
}
func main() {
if len(os.Args) != 2 && len(os.Args) != 3 {
fmt.Fprintf(os.Stderr, "Usage: %s inputfile\n", os.Args[0])
os.Exit(1)
}
inputFilename := os.Args[1]
inputFile, err := os.Open(inputFilename)
if err != nil {
panic(fmt.Sprintf("could not open input file: %s", err))
}
defer inputFile.Close()
inputBytes, err := io.ReadAll(inputFile)
if err != nil {
panic(fmt.Sprintf("could not read input file: %s", err))
}
input := strings.TrimSpace(string(inputBytes))
if err != nil {
panic(fmt.Sprintf("failed to parse input: %s", err))
}
inputLines := strings.Split(input, "\n")
if len(inputLines) < 3 {
panic("not enough data in input to parse")
}
directions, err := parseDirectionLine(inputLines[0])
if err != nil {
panic(fmt.Sprintf("failed to parse direction lien: %s", err))
}
nodeMap, err := parseMap(inputLines[2:])
if err != nil {
panic(fmt.Sprintf("failed to parse map: %s", err))
}
fmt.Printf("Part 1: %d\n", part1(directions, nodeMap))
fmt.Printf("Part 2: %d\n", part2(directions, nodeMap))
}
func part1(directions []Direction, nodeMap map[NodeAddress]NodeChoice) int {
const (
NodeAddressStart NodeAddress = "AAA"
NodeAddressEnd NodeAddress = "ZZZ"
)
directionCursor := 0
currentNode := NodeAddressStart
steps := 0
for currentNode != NodeAddressEnd {
direction := directions[directionCursor]
currentNode = nodeMap[currentNode].TakeDirection(direction)
directionCursor = (directionCursor + 1) % len(directions)
steps++
}
return steps
}
func part2(directions []Direction, nodeMap map[NodeAddress]NodeChoice) int {
directionCursor := 0
nodes := findPart2StartingNodes(nodeMap)
if len(nodes) == 0 {
panic("no starting nodes")
}
steps := 0
encounteredEnd := []int{}
for len(encounteredEnd) != len(nodes) {
direction := directions[directionCursor]
for i, node := range nodes {
nodes[i] = nodeMap[node].TakeDirection(direction)
if nodeEndsIn(nodes[i], 'Z') {
encounteredEnd = append(encounteredEnd, steps+1)
}
}
directionCursor = (directionCursor + 1) % len(directions)
steps++
}
// Once we have encountered all the steps to get to each ending, the LCM will find the first time they all match
return sliceLCM(encounteredEnd)
}
// sliceLCM finds the LCM of the numbers in the given slice. Panics if the slice is of length zero
func sliceLCM(nums []int) int {
if len(nums) == 0 {
panic("cannot find lcm of zero numbers")
}
result := nums[0]
for _, n := range nums[1:] {
result = lcm(result, n)
}
return result
}
func lcm(a, b int) int {
return b * (a / gcd(a, b))
}
func gcd(a, b int) int {
// https://en.wikipedia.org/wiki/Euclidean_algorithm
factor := a
rem := b
for rem != 0 {
oldRem := rem
rem = factor % rem
factor = oldRem
}
return factor
}
func findPart2StartingNodes(nodeMap map[NodeAddress]NodeChoice) []NodeAddress {
startNodes := []NodeAddress{}
for addr := range nodeMap {
if nodeEndsIn(addr, 'A') {
startNodes = append(startNodes, addr)
}
}
return startNodes
}
func nodeEndsIn(addr NodeAddress, c byte) bool {
return addr[len(addr)-1] == c
}
func parseDirectionLine(line string) ([]Direction, error) {
directions := make([]Direction, len(line))
for i, char := range line {
if char == 'L' {
directions[i] = DirectionLeft
} else if char == 'R' {
directions[i] = DirectionRight
} else {
return nil, fmt.Errorf("invalid direction char '%c'", char)
}
}
return directions, nil
}
func parseMap(lines []string) (map[NodeAddress]NodeChoice, error) {
mapNodes := make(map[NodeAddress]NodeChoice, len(lines))
for _, line := range lines {
source, choice, err := parseMapLine(line)
if err != nil {
return nil, fmt.Errorf("could not parse %q: %w", line, err)
}
mapNodes[source] = choice
}
return mapNodes, nil
}
func parseMapLine(line string) (NodeAddress, NodeChoice, error) {
pattern := regexp.MustCompile(`^([0-9A-Z]{2}[A-Z]) = \(([0-9A-Z]{2}[A-Z]), ([0-9A-Z]{2}[A-Z])\)$`)
matches := pattern.FindStringSubmatch(line)
if matches == nil {
return "", NodeChoice{}, errors.New("malformed line")
}
source := NodeAddress(matches[1])
choice := NodeChoice{left: NodeAddress(matches[2]), right: NodeAddress(matches[3])}
return source, choice, nil
}