advent-of-code-2023/day19/main.go

441 lines
10 KiB
Go

// TOO HIGH 288057819955899
package main
import (
"errors"
"fmt"
"io"
"os"
"regexp"
"strconv"
"strings"
)
type PartRatingType rune
const (
RatingTypeX PartRatingType = 'x'
RatingTypeM PartRatingType = 'm'
RatingTypeA PartRatingType = 'a'
RatingTypeS PartRatingType = 's'
)
type ComparisonOperator rune
const (
OperatorGreater ComparisonOperator = '>'
OperatorLess ComparisonOperator = '<'
)
type Part struct {
XtremelyCoolRating int
MusicalRating int
AerodynamicRating int
ShinyRating int
}
type Rule struct {
Conditions []RuleCondition
FallbackDestination string
}
type RuleCondition struct {
PartRatingType PartRatingType
Operator ComparisonOperator
Operand int
SuccessDestination string
}
type Range struct {
// both are inclusive
min int
max int
}
func (part Part) Rating(ratingType PartRatingType) int {
switch ratingType {
case RatingTypeX:
return part.XtremelyCoolRating
case RatingTypeM:
return part.MusicalRating
case RatingTypeA:
return part.AerodynamicRating
case RatingTypeS:
return part.ShinyRating
default:
panic(fmt.Sprintf("invalid rating type %c", ratingType))
}
}
func (operator ComparisonOperator) Compare(a, b int) bool {
switch operator {
case OperatorGreater:
return a > b
case OperatorLess:
return a < b
default:
panic(fmt.Sprintf("invalid operator %c", operator))
}
}
func (r Range) Min() int {
return r.min
}
func (r Range) Max() int {
return r.max
}
func (r Range) Empty() bool {
return r.min > r.max
}
func (r Range) EliminateLessThan(n int) Range {
if r.Empty() {
return r
}
if n > r.min {
r.min = n
}
return r
}
func (r Range) EliminateLessThanEq(n int) Range {
return r.EliminateLessThan(n + 1)
}
func (r Range) EliminateGreaterThan(n int) Range {
if r.Empty() {
return r
}
if n < r.max {
r.max = n
}
return r
}
func (r Range) EliminateGreaterThanEq(n int) Range {
return r.EliminateGreaterThan(n - 1)
}
func (r Range) Spread() int {
if r.Empty() {
return 0
}
return r.max - r.min + 1
}
func (r Range) Intersection(other Range) Range {
return Range{
min: max(r.min, other.min),
max: min(r.max, other.max),
}
}
func main() {
if len(os.Args) != 2 && len(os.Args) != 3 {
fmt.Fprintf(os.Stderr, "Usage: %s inputfile\n", os.Args[0])
os.Exit(1)
}
inputFilename := os.Args[1]
inputFile, err := os.Open(inputFilename)
if err != nil {
panic(fmt.Sprintf("could not open input file: %s", err))
}
defer inputFile.Close()
inputBytes, err := io.ReadAll(inputFile)
if err != nil {
panic(fmt.Sprintf("could not read input file: %s", err))
}
input := strings.TrimSpace(string(inputBytes))
sections := strings.Split(input, "\n\n")
if len(sections) != 2 {
panic(fmt.Sprintf("input file did not have expected number of sections (got %d, expected 2)", len(sections)))
}
rawRules := strings.Split(strings.TrimSpace(sections[0]), "\n")
rules, err := parseRules(rawRules)
if err != nil {
panic(fmt.Sprintf("could not parse rules: %s", err))
}
rawParts := strings.Split(strings.TrimSpace(sections[1]), "\n")
parts, err := parseParts(rawParts)
if err != nil {
panic(fmt.Sprintf("could not parse parts: %s", err))
}
fmt.Printf("Part 1: %d\n", part1(rules, parts))
fmt.Printf("Part 2: %d\n", part2(rules))
}
func part1(rules map[string]Rule, parts []Part) int {
ruleFuncs := make(map[string]func(Part) string, len(rules))
for ruleName, rule := range rules {
ruleFuncs[ruleName] = buildRuleFunc(rule)
}
acceptedParts := []Part{}
for _, part := range parts {
accepted, err := isPartAccepted(ruleFuncs, part)
if err != nil {
panic(fmt.Sprintf("could not process part %v: %s", part, err))
}
if accepted {
acceptedParts = append(acceptedParts, part)
}
}
acceptedRatings := 0
for _, part := range acceptedParts {
acceptedRatings += part.XtremelyCoolRating
acceptedRatings += part.MusicalRating
acceptedRatings += part.AerodynamicRating
acceptedRatings += part.ShinyRating
}
return acceptedRatings
}
func part2(rules map[string]Rule) int {
ranges := map[PartRatingType]Range{
RatingTypeX: {min: 1, max: 4000},
RatingTypeM: {min: 1, max: 4000},
RatingTypeA: {min: 1, max: 4000},
RatingTypeS: {min: 1, max: 4000},
}
return combinationsSatisfyingRules(rules, "in", ranges)
}
func isPartAccepted(rules map[string]func(Part) string, part Part) (bool, error) {
startRule, ok := rules["in"]
if !ok {
return false, errors.New("could not locate start rule")
}
rule := startRule
for {
nextRuleName := rule(part)
if nextRuleName == "A" {
return true, nil
} else if nextRuleName == "R" {
return false, nil
}
rule, ok = rules[nextRuleName]
if !ok {
return false, fmt.Errorf("could not locate rule %q", nextRuleName)
}
}
}
func combinationsSatisfyingRules(rules map[string]Rule, currentRule string, ranges map[PartRatingType]Range) int {
if currentRule == "R" {
return 0
} else if currentRule == "A" {
combos := 1
for _, r := range ranges {
combos *= r.Spread()
}
return combos
}
rule, ok := rules[currentRule]
if !ok {
panic(fmt.Sprintf("invalid rule %s", currentRule))
}
combos := 0
culledRanges := cloneMap(ranges)
for _, condition := range rule.Conditions {
affectedRange, ok := culledRanges[condition.PartRatingType]
if !ok {
panic(fmt.Sprintf("invalid part rating type %d", condition.PartRatingType))
}
if condition.Operator == OperatorGreater {
updRanges := cloneMap(culledRanges)
updRanges[condition.PartRatingType] = affectedRange.EliminateLessThanEq(condition.Operand)
combos += combinationsSatisfyingRules(rules, condition.SuccessDestination, updRanges)
culledRanges[condition.PartRatingType] = affectedRange.EliminateGreaterThan(condition.Operand)
} else if condition.Operator == OperatorLess {
updRanges := cloneMap(culledRanges)
updRanges[condition.PartRatingType] = affectedRange.EliminateGreaterThanEq(condition.Operand)
combos += combinationsSatisfyingRules(rules, condition.SuccessDestination, updRanges)
culledRanges[condition.PartRatingType] = affectedRange.EliminateLessThan(condition.Operand)
} else {
panic(fmt.Sprintf("invalid operator %c", condition.Operand))
}
}
return combos + combinationsSatisfyingRules(rules, rule.FallbackDestination, culledRanges)
}
func parseParts(inputLines []string) ([]Part, error) {
return tryParse(inputLines, parsePart)
}
func parsePart(input string) (Part, error) {
partPattern := regexp.MustCompile(`^\{x=(\d+),m=(\d+),a=(\d+),s=(\d+)\}$`)
matches := partPattern.FindStringSubmatch(input)
if matches == nil {
return Part{}, errors.New("malformed part")
}
ratings, err := tryParse(matches[1:], strconv.Atoi)
if err != nil {
// can't happen because the pattern only has integers
panic(fmt.Sprintf("could not parse ratings: %s", err))
}
return Part{
XtremelyCoolRating: ratings[0],
MusicalRating: ratings[1],
AerodynamicRating: ratings[2],
ShinyRating: ratings[3],
}, nil
}
func parseRules(inputLines []string) (map[string]Rule, error) {
rules := make(map[string]Rule, len(inputLines))
for i, rawRule := range inputLines {
ruleName, rule, err := parseRule(rawRule)
if err != nil {
return nil, fmt.Errorf("invalid rule #%d: %w", i, err)
}
rules[ruleName] = rule
}
return rules, nil
}
func parseRule(rawRule string) (string, Rule, error) {
declarationsPattern := regexp.MustCompile(`^([a-z]+)\{((?:[xmas][<>]\d+:[a-zAR]+,)+)([a-zAR]+)\}$`)
declarationMatches := declarationsPattern.FindStringSubmatch(rawRule)
if declarationMatches == nil {
fmt.Println(rawRule)
return "", Rule{}, errors.New("malformed declarations")
}
name := declarationMatches[1]
rawConditions := declarationMatches[2]
fallbackDestination := declarationMatches[3]
conditions, err := parseRuleConditions(rawConditions)
if err != nil {
return "", Rule{}, fmt.Errorf("parse conditions: %w", err)
}
rule := Rule{
Conditions: conditions,
FallbackDestination: fallbackDestination,
}
return name, rule, nil
}
func buildRuleFunc(rule Rule) func(Part) string {
baseFunc := func(Part) string {
return rule.FallbackDestination
}
// We must store all of the destination functions, otherwise we will
// be binding to old names of functions when wrapping :(
destFuncs := []func(Part) string{baseFunc}
destFunc := func(part Part) string {
return destFuncs[0](part)
}
for i := len(rule.Conditions) - 1; i >= 0; i-- {
condition := rule.Conditions[i]
lastFunc := destFuncs[len(destFuncs)-1]
ruleDestFunc := func(part Part) string {
value := part.Rating(condition.PartRatingType)
if condition.Operator.Compare(value, condition.Operand) {
return condition.SuccessDestination
} else {
return lastFunc(part)
}
}
destFuncs = append(destFuncs, ruleDestFunc)
destFunc = ruleDestFunc
}
return destFunc
}
func parseRuleConditions(rawConditions string) ([]RuleCondition, error) {
conditionPattern := regexp.MustCompile(`^([xmas])([<>])(\d+):([a-zAR]+)$`)
splitRawConditions := strings.Split(strings.TrimRight(rawConditions, ","), ",")
conditions := make([]RuleCondition, len(splitRawConditions))
for i, rawCondition := range splitRawConditions {
conditionMatches := conditionPattern.FindStringSubmatch(rawCondition)
if conditionMatches == nil {
return nil, fmt.Errorf("malformed condition %q", rawCondition)
}
// These first two are definitely safe, because the pattern restricts
// these values to single-chars that are available in their types
ratingType := PartRatingType(conditionMatches[1][0])
operator := ComparisonOperator(conditionMatches[2][0])
rawOperand := conditionMatches[3]
destination := conditionMatches[4]
operand, err := strconv.Atoi(rawOperand)
if err != nil {
// cannot happen, we guarantee this is an integer from the pattern
panic(fmt.Sprintf("could not parse condition: %s", err))
}
conditions[i] = RuleCondition{
PartRatingType: ratingType,
Operator: operator,
Operand: operand,
SuccessDestination: destination,
}
}
return conditions, nil
}
func tryParse[T any](items []string, parse func(string) (T, error)) ([]T, error) {
res := make([]T, 0, len(items))
for i, item := range items {
parsed, err := parse(item)
if err != nil {
return nil, fmt.Errorf("invalid item #%d: %w", i+1, err)
}
res = append(res, parsed)
}
return res, nil
}
func cloneMap[T comparable, U any, M ~map[T]U](m M) M {
copy := make(M, len(m))
for key, value := range m {
copy[key] = value
}
return copy
}