qmk_firmware_2/quantum/sequencer/sequencer.c
2021-07-28 12:01:23 +01:00

276 lines
9.2 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright 2020 Rodolphe Belouin
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sequencer.h"
#ifdef MIDI_ENABLE
# include "process_midi.h"
#endif
#ifdef MIDI_MOCKED
# include "tests/midi_mock.h"
#endif
sequencer_config_t sequencer_config = {
false, // enabled
{false}, // steps
{0}, // track notes
60, // tempo
SQ_RES_4, // resolution
};
sequencer_state_t sequencer_internal_state = {0, 0, 0, 0, SEQUENCER_PHASE_ATTACK};
bool is_sequencer_on(void) { return sequencer_config.enabled; }
void sequencer_on(void) {
dprintln("sequencer on");
sequencer_config.enabled = true;
sequencer_internal_state.current_track = 0;
sequencer_internal_state.current_step = 0;
sequencer_internal_state.timer = timer_read();
sequencer_internal_state.phase = SEQUENCER_PHASE_ATTACK;
}
void sequencer_off(void) {
dprintln("sequencer off");
sequencer_config.enabled = false;
sequencer_internal_state.current_step = 0;
}
void sequencer_toggle(void) {
if (is_sequencer_on()) {
sequencer_off();
} else {
sequencer_on();
}
}
void sequencer_set_track_notes(const uint16_t track_notes[SEQUENCER_TRACKS]) {
for (uint8_t i = 0; i < SEQUENCER_TRACKS; i++) {
sequencer_config.track_notes[i] = track_notes[i];
}
}
bool is_sequencer_track_active(uint8_t track) { return (sequencer_internal_state.active_tracks >> track) & true; }
void sequencer_set_track_activation(uint8_t track, bool value) {
if (value) {
sequencer_internal_state.active_tracks |= (1 << track);
} else {
sequencer_internal_state.active_tracks &= ~(1 << track);
}
dprintf("sequencer: track %d is %s\n", track, value ? "active" : "inactive");
}
void sequencer_toggle_track_activation(uint8_t track) { sequencer_set_track_activation(track, !is_sequencer_track_active(track)); }
void sequencer_toggle_single_active_track(uint8_t track) {
if (is_sequencer_track_active(track)) {
sequencer_internal_state.active_tracks = 0;
} else {
sequencer_internal_state.active_tracks = 1 << track;
}
}
bool is_sequencer_step_on(uint8_t step) { return step < SEQUENCER_STEPS && (sequencer_config.steps[step] & sequencer_internal_state.active_tracks) > 0; }
bool is_sequencer_step_on_for_track(uint8_t step, uint8_t track) { return step < SEQUENCER_STEPS && (sequencer_config.steps[step] >> track) & true; }
void sequencer_set_step(uint8_t step, bool value) {
if (step < SEQUENCER_STEPS) {
if (value) {
sequencer_config.steps[step] |= sequencer_internal_state.active_tracks;
} else {
sequencer_config.steps[step] &= ~sequencer_internal_state.active_tracks;
}
dprintf("sequencer: step %d is %s\n", step, value ? "on" : "off");
} else {
dprintf("sequencer: step %d is out of range\n", step);
}
}
void sequencer_toggle_step(uint8_t step) {
if (is_sequencer_step_on(step)) {
sequencer_set_step_off(step);
} else {
sequencer_set_step_on(step);
}
}
void sequencer_set_all_steps(bool value) {
for (uint8_t step = 0; step < SEQUENCER_STEPS; step++) {
if (value) {
sequencer_config.steps[step] |= sequencer_internal_state.active_tracks;
} else {
sequencer_config.steps[step] &= ~sequencer_internal_state.active_tracks;
}
}
dprintf("sequencer: all steps are %s\n", value ? "on" : "off");
}
uint8_t sequencer_get_tempo(void) { return sequencer_config.tempo; }
void sequencer_set_tempo(uint8_t tempo) {
if (tempo > 0) {
sequencer_config.tempo = tempo;
dprintf("sequencer: tempo set to %d bpm\n", tempo);
} else {
dprintln("sequencer: cannot set tempo to 0");
}
}
void sequencer_increase_tempo(void) {
// Handling potential uint8_t overflow
if (sequencer_config.tempo < UINT8_MAX) {
sequencer_set_tempo(sequencer_config.tempo + 1);
} else {
dprintf("sequencer: cannot set tempo above %d\n", UINT8_MAX);
}
}
void sequencer_decrease_tempo(void) { sequencer_set_tempo(sequencer_config.tempo - 1); }
sequencer_resolution_t sequencer_get_resolution(void) { return sequencer_config.resolution; }
void sequencer_set_resolution(sequencer_resolution_t resolution) {
if (resolution >= 0 && resolution < SEQUENCER_RESOLUTIONS) {
sequencer_config.resolution = resolution;
dprintf("sequencer: resolution set to %d\n", resolution);
} else {
dprintf("sequencer: resolution %d is out of range\n", resolution);
}
}
void sequencer_increase_resolution(void) { sequencer_set_resolution(sequencer_config.resolution + 1); }
void sequencer_decrease_resolution(void) { sequencer_set_resolution(sequencer_config.resolution - 1); }
uint8_t sequencer_get_current_step(void) { return sequencer_internal_state.current_step; }
void sequencer_phase_attack(void) {
dprintf("sequencer: step %d\n", sequencer_internal_state.current_step);
dprintf("sequencer: time %d\n", timer_read());
if (sequencer_internal_state.current_track == 0) {
sequencer_internal_state.timer = timer_read();
}
if (timer_elapsed(sequencer_internal_state.timer) < sequencer_internal_state.current_track * SEQUENCER_TRACK_THROTTLE) {
return;
}
#if defined(MIDI_ENABLE) || defined(MIDI_MOCKED)
if (is_sequencer_step_on_for_track(sequencer_internal_state.current_step, sequencer_internal_state.current_track)) {
process_midi_basic_noteon(midi_compute_note(sequencer_config.track_notes[sequencer_internal_state.current_track]));
}
#endif
if (sequencer_internal_state.current_track < SEQUENCER_TRACKS - 1) {
sequencer_internal_state.current_track++;
} else {
sequencer_internal_state.phase = SEQUENCER_PHASE_RELEASE;
}
}
void sequencer_phase_release(void) {
if (timer_elapsed(sequencer_internal_state.timer) < SEQUENCER_PHASE_RELEASE_TIMEOUT + sequencer_internal_state.current_track * SEQUENCER_TRACK_THROTTLE) {
return;
}
#if defined(MIDI_ENABLE) || defined(MIDI_MOCKED)
if (is_sequencer_step_on_for_track(sequencer_internal_state.current_step, sequencer_internal_state.current_track)) {
process_midi_basic_noteoff(midi_compute_note(sequencer_config.track_notes[sequencer_internal_state.current_track]));
}
#endif
if (sequencer_internal_state.current_track > 0) {
sequencer_internal_state.current_track--;
} else {
sequencer_internal_state.phase = SEQUENCER_PHASE_PAUSE;
}
}
void sequencer_phase_pause(void) {
if (timer_elapsed(sequencer_internal_state.timer) < sequencer_get_step_duration()) {
return;
}
sequencer_internal_state.current_step = (sequencer_internal_state.current_step + 1) % SEQUENCER_STEPS;
sequencer_internal_state.phase = SEQUENCER_PHASE_ATTACK;
}
void sequencer_task(void) {
if (!sequencer_config.enabled) {
return;
}
if (sequencer_internal_state.phase == SEQUENCER_PHASE_PAUSE) {
sequencer_phase_pause();
}
if (sequencer_internal_state.phase == SEQUENCER_PHASE_RELEASE) {
sequencer_phase_release();
}
if (sequencer_internal_state.phase == SEQUENCER_PHASE_ATTACK) {
sequencer_phase_attack();
}
}
uint16_t sequencer_get_beat_duration(void) { return get_beat_duration(sequencer_config.tempo); }
uint16_t sequencer_get_step_duration(void) { return get_step_duration(sequencer_config.tempo, sequencer_config.resolution); }
uint16_t get_beat_duration(uint8_t tempo) {
// Dont crash in the unlikely case where the given tempo is 0
if (tempo == 0) {
return get_beat_duration(60);
}
/**
* Given
* t = tempo and d = duration, both strictly greater than 0
* When
* t beats / minute = 1 beat / d ms
* Then
* t beats / 60000ms = 1 beat / d ms
* d ms = 60000ms / t
*/
return 60000 / tempo;
}
uint16_t get_step_duration(uint8_t tempo, sequencer_resolution_t resolution) {
/**
* Resolution cheatsheet:
* 1/2 => 2 steps per 4 beats
* 1/2T => 3 steps per 4 beats
* 1/4 => 4 steps per 4 beats
* 1/4T => 6 steps per 4 beats
* 1/8 => 8 steps per 4 beats
* 1/8T => 12 steps per 4 beats
* 1/16 => 16 steps per 4 beats
* 1/16T => 24 steps per 4 beats
* 1/32 => 32 steps per 4 beats
*
* The number of steps for binary resolutions follows the powers of 2.
* The ternary variants are simply 1.5x faster.
*/
bool is_binary = resolution % 2 == 0;
uint8_t binary_steps = 2 << (resolution / 2);
uint16_t binary_step_duration = get_beat_duration(tempo) * 4 / binary_steps;
return is_binary ? binary_step_duration : 2 * binary_step_duration / 3;
}