advent-of-code-2020/day18/day18.cpp
2020-12-18 21:22:41 -05:00

384 lines
12 KiB
C++

#include <fstream>
#include <functional>
#include <iostream>
#include <memory>
#include <numeric>
#include <optional>
#include <string>
#include <vector>
enum Operation { ADDITION = '+', MULTIPLICATION = '*', IDENTITY = 'i' };
class ExpressionNode;
// A strategy to evaluate the value of a node. Takes the left child, the right child, and the current operation at the
// node.
using EvaluationStrategy =
std::function<double(const std::unique_ptr<ExpressionNode> &, const std::unique_ptr<ExpressionNode> &, Operation)>;
/**
* Represents an abstract node in an expression tree
*/
class ExpressionNode {
public:
ExpressionNode() {
}
/**
* Get the current node's value
* @return long The value of the node
*/
virtual long evaluate() const = 0;
/**
* Get references to all of the children to this node
* @return std::vector<std::reference_wrapper<const ExpressionNode>>
*/
virtual std::vector<std::reference_wrapper<const ExpressionNode>> getChildren() const = 0;
/**
* Get the operation of this node
* @return Operation The operation of this node
*/
virtual Operation getOperation() const = 0;
virtual ~ExpressionNode() {
}
};
/**
* Represents a node that only holds a value
*/
class ValueNode : public ExpressionNode {
public:
ValueNode(long n) : n(n) {
}
long evaluate() const override {
return n;
}
std::vector<std::reference_wrapper<const ExpressionNode>> getChildren() const override {
return std::vector<std::reference_wrapper<const ExpressionNode>>{*this};
}
Operation getOperation() const {
return IDENTITY;
}
private:
long n;
};
/**
* Represents a node that can hold a more complex operation (which really ends up being a tree)
*/
class ExpressionTree : public ExpressionNode {
public:
ExpressionTree(EvaluationStrategy strategy) : strategy(strategy) {
}
void setLeft(std::unique_ptr<ExpressionNode> &&left) {
this->left = std::move(left);
}
void setRight(std::unique_ptr<ExpressionNode> &&left) {
this->right = std::move(left);
}
void setOp(Operation op) {
this->op = op;
}
long evaluate() const override {
if (!this->canFullyEvaluate()) {
// It USUALLY shouldn't happen but sometimes parentheticals can only have one child
if (this->left) {
return this->left->evaluate();
} else if (this->right) {
return this->right->evaluate();
} else {
throw "Tree must have a component to evaluate";
}
}
return this->strategy(this->left, this->right, *(this->op));
}
std::vector<std::reference_wrapper<const ExpressionNode>> getChildren() const override {
if (!this->left && !this->right) {
throw "Cannot evaluate empty tree's children";
}
std::vector<std::reference_wrapper<const ExpressionNode>> children;
// It USUALLY shouldn't happen but sometimes parentheticals can only have one child
if (this->left) {
children.push_back(*this->left);
}
if (this->right) {
children.push_back(*this->right);
}
return children;
}
Operation getOperation() const {
if (!this->op) {
throw "Cannot get an unset operator";
}
return *this->op;
}
private:
std::unique_ptr<ExpressionNode> left;
std::unique_ptr<ExpressionNode> right;
std::optional<Operation> op;
EvaluationStrategy strategy;
bool canFullyEvaluate() const {
return this->left && this->right && this->op;
}
};
std::vector<std::string> readInput(const std::string &filename) {
std::vector<std::string> input;
std::string line;
std::ifstream file(filename);
while (std::getline(file, line)) {
input.push_back(line);
}
return input;
}
/**
* Parse a string component into an operator
* @param component The string component to check
* @return std::optional<Operation> The operation, if this component represents one. If not, returns an empty optional.
*/
std::optional<Operation> parseOperator(const std::string_view component) {
if (component.size() != 1) {
return std::nullopt;
}
switch (component.at(0)) {
case ADDITION:
return ADDITION;
case MULTIPLICATION:
return MULTIPLICATION;
default:
return std::nullopt;
}
}
/**
* Parse a string component into a number
* @param component The string component to check
* @return std::optional<Operation> The number, if this component represents one. If not, returns an empty optional.
*/
std::optional<long> parseNumber(const std::string_view component) {
try {
// This will only really ever copy some (usually small) number of digits... I don't consider it a very
// expensive copy
return std::stol(std::string(component));
} catch (std::invalid_argument) {
return std::nullopt;
}
}
/**
* Parse a parenthetical component of an expression
* @param cursor The cursor to start searching backwards from
* @param input The full input
* @return std::optional<std::pair<std::string_view, int>> The parenthetical, if one exists (without parens).
*/
std::optional<std::pair<std::string_view, int>> parseParenthetical(int cursor, const std::string_view input) {
if (input.size() == 0 || input.at(cursor) != ')') {
return std::nullopt;
}
int i = cursor;
int rightCount = 0;
for (auto it = input.crbegin() + (input.size() - cursor); it != input.crend(); (++it, i--)) {
if (*it == '(' && rightCount == 0) {
break;
}
if (*it == ')') {
rightCount++;
} else if (*it == '(') {
rightCount--;
}
}
int startPos = i - 1;
return std::pair<std::string_view, int>(input.substr(startPos + 1, cursor - startPos - 1), startPos);
}
/**
* Build a parse tree
* @param input The input to build from
* @param strategy The evaluation strategy for each of the nodes to use
* @return std::unique_ptr<ExpressionNode> The root of the tree
*/
std::unique_ptr<ExpressionNode> buildTree(const std::string_view input, const EvaluationStrategy &strategy) {
if (std::count_if(input.cbegin(), input.cend(), [](char c) { return c == ' '; }) == 0) {
std::optional<long> value = parseNumber(input);
if (!value) {
throw std::invalid_argument("one-component string is expected to be number");
}
return std::make_unique<ValueNode>(*value);
}
ExpressionTree tree(strategy);
// This should technically be size_type but I need to be able to go before zero
int cursor = input.size() - 1;
while (cursor > 0) {
// Traverse the string right to left. Evaluating an expression tree will always evaluate right to left.
std::string_view::size_type previousSpace = cursor + 1;
std::string_view::size_type nextSpace = input.rfind(" ", cursor - 1);
std::string_view component = input.substr(nextSpace + 1, cursor - nextSpace);
cursor = nextSpace - 1;
// Attempt to find a parenthetical, and get its parse value if we can
std::optional<std::pair<std::string_view, int>> parentheticalPart =
parseParenthetical(previousSpace - 1, input);
if (parentheticalPart) {
auto parentheticalTree = buildTree(parentheticalPart->first, strategy);
// NOTE: Just like concrete values, parentheticals will *ALWAYS* (except for leaves) be in the right
// subtree. This helps with precedence parsing later
tree.setRight(std::move(parentheticalTree));
cursor = parentheticalPart->second - 2;
continue;
}
// Attempt to add an operator to our parse if we have it
std::optional<Operation> componentOperation = parseOperator(component);
if (componentOperation) {
tree.setOp(*componentOperation);
auto rest = input.substr(0, cursor + 1);
auto rightTree = buildTree(rest, strategy);
tree.setLeft(std::move(rightTree));
// Once we have found an operator and the operand to the left of it, we're done
break;
}
// Attempt to find a value
std::optional<long> componentValue = parseNumber(component);
if (!componentValue) {
throw std::invalid_argument("Expected number as last possible option");
}
// NOTE: Concrete values will *ALWAYS* (except at the leaf level) be in the right sub-tree. This was not
// intentional but will help with precedence later.
tree.setRight(std::make_unique<ValueNode>(*componentValue));
}
return std::make_unique<ExpressionTree>(std::move(tree));
}
/**
* Evaluate the puzzle input, evaluating each node according to the given strategy.
* @param input The input
* @param strategy The strategy to evaluate each node
* @return long The puzzle result
*/
long run(const std::vector<std::string> &input, const EvaluationStrategy &strategy) {
return std::accumulate(input.cbegin(), input.cend(), 0L, [&strategy](long total, const std::string &expression) {
auto tree = buildTree(expression, strategy);
return total + tree->evaluate();
});
}
long part1(const std::vector<std::string> &input) {
EvaluationStrategy strategy =
[](const std::unique_ptr<ExpressionNode> &left, const std::unique_ptr<ExpressionNode> &right, Operation op) {
long leftValue = left->evaluate();
long rightValue = right->evaluate();
switch (op) {
case ADDITION:
return leftValue + rightValue;
case MULTIPLICATION:
return leftValue * rightValue;
default:
throw std::invalid_argument("Invalid operation");
}
};
return run(input, strategy);
}
long part2(const std::vector<std::string> &input) {
EvaluationStrategy strategy = [](const std::unique_ptr<ExpressionNode> &left,
const std::unique_ptr<ExpressionNode> &right,
Operation op) -> long {
auto leftChildren = left->getChildren();
if (leftChildren.size() == 1 && op == ADDITION) {
return leftChildren.at(0).get().evaluate() + right->evaluate();
} else if (leftChildren.size() == 1 && op == MULTIPLICATION) {
return leftChildren.at(0).get().evaluate() * right->evaluate();
} else if (leftChildren.size() != 2) {
throw std::invalid_argument("Cannot perform unknown binary operation on children");
}
if (op == MULTIPLICATION) {
return right->evaluate() * left->evaluate();
} else if (op != ADDITION && left->getOperation() != MULTIPLICATION) {
throw std::invalid_argument("Cannot perform an unknown binary operation on children");
}
// We wish to traverse down the righthand children until we hit a multiplication operator
// By doing this, we prioritize adding up the operands first, and then we can evaluate the multiplicand after
// the fact
ExpressionNode const *prevCursor = nullptr;
ExpressionNode const *cursor = left.get();
long total = right->evaluate();
while (cursor->getChildren().size() == 2 && cursor->getOperation() == ADDITION) {
auto cursorChildren = cursor->getChildren();
const ExpressionNode &leftCursorChild = cursorChildren.at(0);
const ExpressionNode &rightCursorChild = cursorChildren.at(1);
total += rightCursorChild.evaluate();
prevCursor = cursor;
cursor = &leftCursorChild;
}
if (cursor->getChildren().size() == 2) {
auto cursorChildren = cursor->getChildren();
const ExpressionNode &leftCursorChild = cursorChildren.at(0);
const ExpressionNode &rightCursorChild = cursorChildren.at(1);
// Add the right child of the multiplicand (to keep with addition priority), and multiply the multiplicand
// (since we know that we can no longer use addition)
return (total + rightCursorChild.evaluate()) * leftCursorChild.evaluate();
} else if (cursor->getChildren().size() != 1) {
throw std::invalid_argument("Only binary and unary operations are supported");
}
// If we only have one child, we must consider what the operation was that lead to it.
const ExpressionNode &cursorChild = cursor->getChildren().at(0);
Operation finalOperation = op;
if (prevCursor) {
finalOperation = prevCursor->getOperation();
}
if (finalOperation == ADDITION) {
return total + cursorChild.evaluate();
} else if (finalOperation == MULTIPLICATION) {
return total * cursorChild.evaluate();
} else {
throw std::invalid_argument("Cannot perform an unknown binary operation on total");
}
};
return run(input, strategy);
}
int main(int argc, char *argv[]) {
if (argc != 2) {
std::cerr << argv[0] << " <input_file>" << std::endl;
return 1;
}
auto input = readInput(argv[1]);
std::cout << part1(input) << std::endl;
std::cout << part2(input) << std::endl;
}